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On Tightly Bounding the Dubins
Traveling Salesman’s Optimum
The Dubins traveling salesman problem (DTSP) has generated significant interest over
the last decade due to its occurrence in several civil and military surveillance applica-
tions. This problem requires finding a curvature constrained shortest path for a vehicle
visiting a set of target locations. Currently, there is no algorithm that can find an optimal
solution to the DTSP. In addition, relaxing the motion constraints and solving the result-
ing Euclidean traveling salesman problem (ETSP) provide the only lower bound avail-
able for the DTSP. However, in many problem instances, the lower bound computed by
solving the ETSP is far below the cost of the feasible solutions obtained by some well-
known algorithms for the DTSP. This paper addresses this fundamental issue and
presents the first systematic procedure for developing tight lower bounds for the DTSP.
[DOI: 10.1115/1.4039099]

1 Introduction

Given a set of targets on a plane, an unmanned vehicle, and its
minimum turning radius (q), the Dubins traveling salesman prob-
lem (DTSP) aims to find a path for the vehicle such that each tar-
get is visited at least once, the radius of curvature of any point in
the path is at least equal to q, and the length of the path is mini-
mal. This problem is a generalization of the Euclidean traveling
salesman problem (ETSP) and is NP-hard [1,2]. The DTSP
belongs to a class of task allocation and path planning problems
envisioned for an unmanned aerial vehicle in Ref. [3]. The DTSP
has received significant attention in the literature [1,2,4–16],
mainly due to its importance in unmanned vehicle applications,
the simplicity of the problem statement, and its status as a hard
problem to solve because it inherits features from both optimal
control and combinatorial optimization.

A feasible path (or a feasible solution) to the DTSP is a curva-
ture constrained path where the radius of curvature at any point in
the path is at least equal to q and each target is visited at least
once. The cost of a path is defined by its length. The optimal cost
of the DTSP is the length of a shortest feasible path for the DTSP.
Any feasible path whose length is equal to the optimal cost is an
optimal solution to the DTSP. There is currently no algorithm in
the literature that can find an optimal solution to the DTSP. Heu-
ristics and approximation algorithms have been developed over
the last decade to find feasible solutions for the DTSP. Tang and
Ozguner [11] presented gradient-based heuristics for both single
and multiple vehicle variants of the DTSP. Savla et al. [12] used
an optimal solution to the ETSP to find a feasible solution for the
DTSP, and they bound the cost of the feasible solution with
respect to the optimal cost of the ETSP. Rathinam et al. [1] devel-
oped an approximation algorithm for the DTSP in cases where the
distance between any two targets is at least equal to 2q. Le Ny
et al. [2] developed an approximation algorithm for the DTSP in
which the approximation guarantee is inversely proportional to
the minimum distance between any two targets. The weakness of
the approximation guarantees of these algorithms for the DTSP is
due to the lack of a good lower bound, as all these algorithms
essentially use the Euclidean distances between the targets to
bound the cost of a feasible solution.

Other heuristics have been used for solving the DTSP. A reced-
ing horizon approach that involves finding an optimal path
through three consecutive targets is used to generate feasible solu-
tions in Ref. [14]. The heuristic in Ref. [4] finds a feasible solution
by minimizing the sum of the distances traveled by the vehicle
and the sum of the changes in the heading angles at each of the
targets. Macharet et al. [5,7] first obtain a tour by solving the
ETSP and then select the heading angle at each target using an
orientation-assignment heuristic. A multiple lookahead approach
is used to find feasible solutions in Refs. [8] and [17]. Metaheuris-
tics have also been developed to find feasible solutions for the
DTSP in Refs. [9] and [10].

Another common approach [13,18] involves discretizing the
heading angle at each target and posing the resulting problem as a
one-in-a-set TSP (Fig. 1). The greater the number of discretiza-
tions, the closer an optimal one-in-a-set TSP solution gets to the
optimal DTSP solution. This approach provides a natural way to
find a good, feasible solution to the problem [18]. However, this
also requires us to solve a large one-in-a-set TSP, which is combi-
natorially hard. Nevertheless, this approach provides an upper
bound [13] for the optimal cost of the DTSP, and simulation
results indicate that the cost of the solutions starts to converge
with more than 15 discretizations at each target.

The fundamental question with regard to all the above heuris-
tics and approximation algorithms is how close a feasible solution
actually is to the optimum. For example, Fig. 2 shows the cost of
the feasible solutions obtained by solving the one-in-a-set TSP
and the ETSP for 25 instances with 20 targets in each instance.
Even with 32 discretizations of the possible angles at each target,
the cost of the feasible solution is at least 30% greater than the
corresponding optimal ETSP cost for several of these instances.
As there is currently no systematic procedure available to find the
optimal cost for the DTSP, identifying a tight lower bound is cru-
cial for determining the quality of the solutions that have been
provided as well as for developing constant factor approximation
algorithms.

This fundamental question was the motivation for the bounding
algorithms in Refs. [19–22]. In these algorithms, the requirement
that the arrival and departure angles must be equal at each target
is removed, and instead there is a penalty in the objective function
whenever the requirement is violated. This results in a max–min
problem where the minimization problem is an asymmetric TSP
(ATSP), and the cost of traveling between any two targets requires
solving a new optimal control problem. In terms of lower bound-
ing, the difficulty with this approach is that we are not currently
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aware of any algorithm that will guarantee a lower bound for the
optimal control problem. Nonetheless, this is a useful approach,
and advances in lower bounding optimal control problems will
lead to finding lower bounds for the DTSP.

In this paper, we propose a new approach for finding tight lower
bounds for the DTSP. This is the first systematic procedure avail-
able for the DTSP and is a natural counterpart to the one-in-a-set
TSP approach we discussed earlier. In this approach, we remove
the requirement that the arrival angle and the departure angle at
each target must be the same, but we restrain these angles so that
they belong to one sector or interval (refer to Fig. 3). The lower
bounding problem (BP) aims to choose an interval at each target
such that the arrival angle and the departure angle at the target
belong to the same interval, each target is visited at least once,
and the sum of the costs of traveling between the targets is mini-
mized. The cost of traveling between two intervals corresponding
to two distinct targets now reduces to a new optimal control prob-
lem, which we refer to as the Dubins interval problem. Given two
targets and an interval at each target, the problem is to find a feasi-
ble path such that the departure angle at the initial target and the
arrival angle at the final target belong to the given intervals and
the length of the path is minimal. The lower bounding problem is
a one-in-a-set TSP and can be solved just like the upper bounding
problem. If the size of each of the intervals at each target reduces
to zero, the lower bounding problem reduces to the DTSP. If there
is only one interval of size 2p at each target, the result is a Euclid-
ean TSP. As the size of the intervals at the targets becomes
smaller, the one-in-a-set TSP becomes combinatorially hard, simi-
lar to the upper bounding problem. Nevertheless, this provides a
systematic approach for finding lower bounds for the DTSP, pro-
vided the Dubins interval problem can be solved.

The Dubins interval problem is a new generalization of the
standard Dubins problem [23] which has not been formulated or
solved1 in the literature. The difficulty with solving this problem
lies in the fact that the length of the shortest feasible paths
between any two targets is a nonlinear, discontinuous function of
the heading angles of the targets. Therefore, finding the optimal
heading angles from the given intervals at the targets that mini-
mizes the length of the path is nontrivial. In this paper, we solve
the interval problem using the monotonicity properties and the
extremal values of the length of the feasible paths.

The first main contribution of this paper is in formulating the
lower bounding problem for the DTSP as a novel one-in-a-set
TSP where the cost of traveling between any two targets requires
solving a Dubins interval problem. This is the first formulation
that aims to provide a tight lower bound for the DTSP. The second
main contribution is in formulating the Dubins interval problem
and providing an algorithm to solve this problem by exploiting its
structure and monotonicity properties. Numerical results are then
presented to corroborate the performance of the proposed lower
bounding approach for 25 instances each involving 10, 15, and 20
targets.

This paper is organized as follows: The lower bounding prob-
lem is formulated in Sec. 2. Dubins interval problem is formally
stated in Sec. 3. Results on the structure and properties of an opti-
mal path for the Dubins interval problem are shown in Sec. 4.
Algorithms are presented in Sec. 5 for solving the main parts of
the Dubins interval problem. The simulations results are then pre-
sented in Sec. 6. Section 7 concludes the paper.

2 Lower Bounding Problem Formulation

The set of targets is denoted by T ¼ f1; 2;…; ng, where n is the
number of targets. The set of available angles ½0; 2p� at any target
i is partitioned into a collection of closed intervals denoted by
I i :¼ f½0;ui1�; ½ui1;ui2�;…, ½uimi�1

;uimi
¼ 2p�g, where mið� 1Þ

denotes the number of intervals at target i and the uij are constants

Fig. 2 A comparison between the cost of the feasible solution
(upper bound) obtained by solving the one-in-a-set TSP with 32
discretizations and the optimal cost of the corresponding ETSP
(lower bound) for 25 instances. There are 20 targets in each
instance, and the location of each target is uniformly sampled
from a 1000 3 1000 square. Also, the minimum turning radius of
the vehicle is set to 100.

Fig. 3 There are four intervals at each target. A lower bound
for the DTSP can be obtained by choosing an interval and
restricting both the arrival and the departure angles to be in the
chosen interval at each target and then finding a corresponding
optimal TSP path. The shaded interval at each target shows the
chosen interval with the arrival and departure angles.

Fig. 1 There are four possible headings at each target. A feasi-
ble solution for the DTSP can be obtained by choosing a head-
ing at each target and finding a corresponding optimal TSP
path.

1We point out that there is also another approach based on optimal control in Ref.
[24]. However, the approach in Ref. [24] still relies on the results of this paper.
Second, unlike the analysis and results in this paper, the work in Ref. [24] does not
provide information about the rate of change of lengths of the paths as a function of
the heading angles at the targets. This information is critical and very useful in the
development of bounds for the feasible solutions and approximation algorithms for
the DTSP.
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such that 0 � ui1 � ui2 � � � � � uimi
¼ 2p. Let (xi, yi) denote the

location of target i 2 T, and let the arrival angle and the departure
angle of the vehicle at target i be denoted by hia and hid, respec-
tively. The configuration of the vehicle leaving target i at hid is
then denoted by ðxi; yi; hidÞ, and ðxi; yi; hiaÞ similarly denotes the
vehicle’s arrival configuration. The length of the shortest Dubins
path from ðxi; yi; hidÞ to ðxj; yj; hjaÞ is denoted by dijðhid; hjaÞ.
Given an interval Ii at target i and an interval Ij at target j, define
d�ijðIi; IjÞ :¼ minhid2Ii;hja2Ij

dijðhid; hjaÞ. The objective of the BP is to

find a sequence of targets ðs1; s2;…; snÞ; si 2 T, to visit and an
interval Isi

2 I i for each target si 2 T such that

� each target is visited at least once, and

� the cost
Pn�1

i¼1 d�sisiþ1
ðIsi
; Isiþ1
Þ þ d�sns1

ðIsn
; Is1
Þ is minimized.

Addressing this BP first requires solving minhid2Ii;hja2Ij

dijðhid; hjaÞ. Once this problem is solved, the BP is essentially a
one-in-a-set TSP. In this paper, we transform the one-in-a-set TSP
into an ATSP using the Noon-Bean transformation [25] and then
convert the resulting ATSP into a symmetric TSP using the trans-
formation in Ref. [26]. The symmetric TSP is solved using the
Concorde2 solver [27] to find an optimal solution. This approach
is already well known and is discussed in detail in Ref. [18].
Therefore, we focus on solving the Dubins interval problem in
Sec. 3. Prior to that, we first formally state the lower bounding
result in the following proposition.

PROPOSITION 2.1. The optimal cost to the BP is a lower bound to
the DTSP.

Proof. Consider an optimal path to the DTSP. Suppose the
heading angle of a vehicle traveling this path at target i belongs to
interval Ii. Let the vehicle travel to target j after i in the optimal
path. Clearly, the length of the optimal path from target i to target
j must be at least equal to d�ijðIi; IjÞ. Also, the intervals at the tar-
gets and the sequence of targets corresponding to the optimal path
are feasible solutions to the BP. Therefore, the cost of the optimal
path to the DTSP must be at least equal to the optimal cost of the
BP. Hence proved. �

3 Dubins Interval Problem

Without loss of generality, let the Dubins interval problem be
denoted as minh12I1 ;h22I2

d12ðh1; h2Þ, where d12ðh1; h2Þ indicates the
shortest path (also referred to as the Dubins path) for traveling
from ðx1; y1; h1Þ to ðx2; y2; h2Þ subject to the minimum turning
radius constraint (Fig. 4). Here the interval Ik is defined as

½hmin
k ; hmax

k � 	 ½0; 2p� for k¼ 1, 2. Given an initial configuration
ðx1; y1; h1Þ and a final configuration ðx2; y2; h2Þ, Dubins [23]
showed that the shortest path for a vehicle to travel between the
two configurations subject to the minimum turning radius (q)

constraint must consist of at most three segments, where each seg-
ment is a circle of radius q or a straight line. Specifically, if a
curved segment of radius q along which the vehicle travels in a
counterclockwise (clockwise) rotational motion is denoted by
L(R), and the segment along which the vehicle travels straight is
denoted by S, then the shortest path is one of RSR, RSL, LSR,
LSL, RLR, and LRL.

Let RSLðh1; h2Þ denote the length of the RSL path from
ðx1; y1; h1Þ to ðx2; y2; h2Þ. RSLðh1; h2Þ is set to 1 if the RSL path
does not exist. Let RSRðh1; h2Þ; LSRðh1; h2Þ; LSLðh1; h2Þ;
RLRðh1; h2Þ, and LRLðh1; h2Þ be defined in a similar way. Using
these definitions, the Dubins interval problem can be written as
follows:

min
h12I1 ;h22I2

d12ðh1; h2Þ

¼ min
h12I1 ;h22I2

fRSRðh1; h2Þ;RSLðh1; h2Þ;LSRðh1; h2Þ;

LSLðh1; h2Þ;RLRðh1; h2Þ;LRLðh1; h2Þg (1)

Remark 3.1. d12ðh1; h2Þ is a lower semicontinuous function and is
minimized over closed and bounded intervals I1 and I2. Therefore,
the Dubins interval problem is well defined, i.e., there exist h�1 2 I1

and h�2 2 I2 such that d12ðh�1; h�2Þ ¼ minh12I1 ;h22I2
d12ðh1; h2Þ.

To solve the Dubins interval problem, we also consider shortest
paths that contain at most two segments between (x1, y1) and (x2,
y2). For any path T 2 fRS;LS; SR;SL;RL;LRg and h1 2 I1, let

T 1ðh1Þ denote the distance of the shortest path of type T that
starts at (x1, y1) with a departure angle of h1 and arrives at (x2, y2)
with an arrival angle in I2. In this case, the arrival angle at (x2, y2)

will be a function of h1 and T and is denoted as h2ðT ; h1Þ. T 1ðh1Þ
is set to1 if a path of type T does not exist. Similarly, let T 2ðh2Þ
denote the distance of the shortest path of type T that starts at (x1,
y1) with a departure angle in I1 and arrives at (x2, y2) with an
arrival angle of h2. In this case, the departure angle at (x1, y1) will

be a function of h2 and T and is denoted as h1ðT ; h2Þ. T 2ðh2Þ is
set to1 if the path of type T does not exist. From the definitions,

note that minh12I1
T 1ðh1Þ ¼ minh22I2

T 2ðh2Þ.
In Sec. 4, we will first show how to simplify

minh12I1;h22I2
Pðh1; h2Þ for any path P 2 fRSR;RSL;LSR;LSLg.

Then we will address the LRL and the RLR paths. These
results will then be combined to develop an algorithm for the
Dubins interval problem stated in Eq. (1). We will show that an
optimal path to the Dubins interval problem must be one of the
following:

(1) an optimal path consisting of at most three segments such
that both the arrival and departure angles at each target
belong to one of the boundary values of the respective
intervals, or

(2) an optimal path consisting of at most two segments such
that the angle constraints are satisfied.

4 Structural Properties of an Optimal Path for the

Dubins Interval Problem

4.1 Optimizing RSR, RSL, LSR, and LSL Paths. The
following result is known [28] for each of the paths P 2
fRSR;RSL;LSR;LSLg from ðx1; y1; h1Þ to ðx2; y2; h2Þ:

LEMMA 4.1. For any P 2 fRSR;RSL;LSR;LSLg and i¼ 1, 2,
either ð@Pðh1; h2Þ=@hiÞ � 08 hi or ð@Pðh1; h2Þ=@hiÞ � 08 hi

when P exists and none of its curved segments vanishes.
Now let us apply the above lemma to the RSL path. The RSL

path ceases to exist when the segment S vanishes, i.e., the RSL
path reduces to an RL path. In addition, when one of the curved
segments vanishes, the RSL path reduces to either the RS or the
SL path (refer to Fig. 5). Therefore, given h1, the optimum for

minh22½hmin
2 ;hmax

2 �RSLðh1; h2Þ must be attained when h2 ¼ hmin
2 or

Fig. 4 A feasible solution to the Dubins interval problem

2Concorde is a computer code available for academic research used for solving
the symmetric TSP and related network optimization problems.
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h2 ¼ hmax
2 or when the RSL path reduces to an RL, RS, or SL

path. This can be stated as follows:

min
h22I2

fRSLðh1;h2Þg

:¼minfRSLðh1;h
min
2 Þ;RSLðh1;h

max
2 Þ;RS1ðh1Þ;SL1ðh1Þ;RL1ðh1Þg

(2)

Therefore,

min
h12I1

min
h22I2

fRSLðh1; h2Þg

¼ min
h12I1

minfRSLðh1; h
min
2 Þ;RSLðh1; h

max
2 Þ;RS1ðh1Þ;

SL1ðh1Þ;RL1ðh1Þg
¼ minfmin

h12I1

RSLðh1; h
min
2 Þ;min

h12I1

RSLðh1; h
max
2 Þ;

min
h12I1

fRS1ðh1Þ; SL1ðh1Þ;RL1ðh1Þgg (3)

Similarly, using Lemma 4.1 again, we get the following:

min
h12I1

RSLðh1; h
min
2 Þ

¼ minfRSLðhmin
1 ; hmin

2 Þ;RSLðhmax
1 ; hmin

2 Þ;RS2ðhmin
2 Þ;

SL2ðhmin
2 Þ;RL2ðhmin

2 Þg (4)

min
h12I1

RSLðh1; h
max
2 Þ

¼ minfRSLðhmin
1 ; hmax

2 Þ;RSLðhmax
1 ; hmax

2 Þ;RS2ðhmax
2 Þ;

SL2ðhmax
2 Þ;RL2ðhmax

2 Þg (5)

Now, one can easily verify the following:

For any T 2 fRS;SL;RLg
min
h12I1

T 1ðh1Þ � T 2ðhmin
2 Þ and min

h12I1

T 1ðh1Þ � T 2ðhmax
2 Þ

(6)

Substituting for minh12I1
RSLðh1; h

min
2 Þ and minh12I1

RSLðh1; h
max
2 Þ

in Eq. (3) using Eqs. (4) and (5) and simplifying further using
Eq. (6), we get

min
h12I1

min
h22I2

RSLðh1; h2Þ

¼ minfRSL�;min
h12I1

fRS1ðh1Þ;SL1ðh1Þ;RL1ðh1Þgg (7)

where

RSL� :¼ minfRSLðhmin
1 ; hmin

2 Þ;RSLðhmax
1 ; hmin

2 Þ;
RSLðhmin

1 ; hmax
2 Þ;RSLðhmax

1 ; hmax
2 Þg (8)

As Lemma 4.1 is also applicable to RSR, LSL, and LSR paths,
one can use the above procedure and simplify minh12I1;h22I2

RSR
ðh1;h2Þ; minh12I1;h22I2

LSLðh1;h2Þ, and minh12I1;h22I2
LSRðh1;h2Þ in

a similar way. Combining all these results, we obtain the
following:

min
h12I1

min
h22I2

min
P2fRSR;RSL;LSR;LSLg

Pðh1; h2Þ

¼ minfP�;min
h12I1

fRS1ðh1Þ;SR1ðh1Þ;LS1ðh1Þ;SL1ðh1Þ;

LR1ðh1Þ;RL1ðh1Þgg (9)

where

P� :¼ min
P2fRSR;RSL;LSR;LSLg

minfPðhmin
1 ; hmin

2 Þ;Pðhmax
1 ; hmin

2 Þ;

Pðhmin
1 ; hmax

2 Þ;Pðhmax
1 ; hmax

2 Þg: (10)

4.2 Optimizing RLR and LRL Paths. Goaoc et al. [28]
have shown that the RLR and LRL paths cannot lead to an optimal
Dubins path if the distance between the two targets is greater than
4q. Therefore, in this section, we assume that the distance
between the two targets is at most 4q. We will focus on
minh12I1;h22I2

LRLðh1; h2Þ; minh12I1 ;h22I2
RLRðh1; h2Þ can be solved

in a similar way. Given h1, unlike the length of the RSL path,
LRLðh1; h2Þ is not monotonous with respect to h2 when LRL
exists. Without loss of generality, we assume that h1¼ 0 and first
aim to understand LRLð0; h2Þ as a function of h2 (refer to Fig. 6).
Target 1 is located at the origin, and target 2 is located at ð�x; �yÞ.
The angles a and b in Fig. 6 are functions of h2. For brevity, we
use a and b in place of aðh2Þ and bðh2Þ, respectively. Let
LRLð0; h2Þ be denoted as Dðh2Þ :¼ ð2pþ 2aþ 2bþ h2Þq. In the
ensuing discussion, we use the fact that the length of the R seg-
ment in an LRL path must be greater than pq (i.e.,
0 < aþ b < p) for the LRL path to be an optimal path between
any two targets [23,29].

LEMMA 4.2. If the LRL path exists and none of its curved seg-
ments vanishes, then for any h2 such that 0 < aðh2Þ þ bðh2Þ < p;
dD=dh2 6¼ 0 except when Dðh2Þ reaches a maximum, i.e., h2

satisfies aþ p=2 ¼ h2.
Proof. Using Fig. 6, a and b can be obtained in terms of h2 as

follows:

Fig. 6 LRL path for h1 5 0

Fig. 5 Given h1, the length of the RSL path varies monotoni-
cally with respect to h2 wherever the path exists and none of its
curved segments vanishes

071013-4 / Vol. 140, JULY 2018 Transactions of the ASME



2q sin aþ q ¼ 2q sin bþ q cos h2 þ �y (11)

2q cos aþ 2q cos bþ q sin h2 ¼ �x (12)

Differentiating and simplifying the above equations, we get

cos a
da
dh2

� cos b
db
dh2

¼ � sin h2

2
(13)

sin a
da
dh2

þ sin b
db
dh2

¼ cos h2

2
(14)

Further solving for the derivatives, we get

db
dh2

¼ cos h2 � að Þ
2 sin aþ bð Þ (15)

da
dh2

¼ cos h2 þ bð Þ
2 sin aþ bð Þ (16)

Therefore,

dD

dh2

¼ q 2
db
dh2

þ 2
da
dh2

þ 1

� �
(17)

¼ q
cos h2 � að Þ
sin aþ bð Þ þ

cos h2 þ bð Þ
sin aþ bð Þ þ 1

 !
(18)

Equation dD=dh2 ¼ 0 yields the following possibilities: h2 ¼
p=2þ a or h2 þ b ¼ �p=2. h2 þ b ¼ �p=2 corresponds to the
case where the second left turn disappears; there is a jump in the

length of the LRL path at this h2, and therefore, dD=dh2 does not
exist. h2 ¼ p=2þ a corresponds to the case where the turn angle
in the right turn is equal to the turn angle in the second left turn;
one can verify that Dðh2Þ reaches a maximum at this point

because d2D=dh2
2 ¼ �ð3q=2Þð1þ cosðaþ bÞÞ= sinðaþ bÞ < 0

(refer to Fig. 7). �
The derivatives of LRLðh1; h2Þ do not exist when any turn in

the path disappears or when the angle in the right turn becomes
equal to p, as shown in Fig. 8. The lengths of the two paths
(Fig. 8) when the LRL path just ceases to exist are denoted by

LRL1
aðh1Þ and LRL1

bðh1Þ. Therefore, applying the above lemma to
the LRL path and following similar steps to those in Sec. 4.1, we
get the following result:

min
h22I2

fLRLðh1; h2Þg

:¼ minfLRLðh1; h
min
2 Þ;LRLðh1; h

max
2 Þ;LR1ðh1Þ;

RL1ðh1Þ;LRL1
aðh1Þ;LRL1

bðh1Þg (19)

Again, as in Sec. 4.1, one can further simplify the above optimi-
zation problem

min
h12I1

min
h22I2

fLRLðh1;h2Þg

¼minfLRL�;minh12I1
fLR1ðh1Þ;RL1ðh1Þ;LRL1

aðh1Þ;LRL1
bðh1Þgg

(20)

where

LRL� :¼ minfLRLðhmin
1 ; hmin

2 Þ;LRLðhmax
1 ; hmin

2 Þ;

LRLðhmin
1 ; hmax

2 Þ;LRLðhmax
1 ; hmax

2 Þg:

Note that LRL1
aðh1Þ and LRL1

bðh1Þ can never result in an opti-
mal path because the angle in the right turn is equal to p [29].
Therefore, once Eq. (20) is substituted in Eq. (1), the functions
LRL1

aðh1Þ and LRL1
bðh1Þ will drop out.

minh12I1
minh22I2

fRLRðh1; h2Þg can be simplified in a similar
way. Hence, combining the above results with Eq. (9), we obtain
the following result.

Fig. 7 Given h1, the length of the LRL path reaches a maximum
when h2 5 (p/2)1a, as shown. This figure also shows the values
of h2 where the LRL path just ceases to exist.

Fig. 8 Given h1, the LRL paths when the arc angle in the right
turn is p. This figure shows the angles for h2 when the LRL path
does not exist.
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THEOREM 4.1.

min
h12I1

min
h22I2

fd12ðh1; h2Þg

¼ minfd�;minh12I1
fRS1ðh1Þ; SR1ðh1Þ;LS1ðh1Þ; SL1ðh1Þ;

LR1ðh1Þ;RL1ðh1Þgg
(21)

where

d� :¼ minfd12ðhmin
1 ; hmin

2 Þ; d12ðhmax
1 ; hmin

2 Þ; d12ðhmin
1 ; hmax

2 Þ;
d12ðhmax

1 ; hmax
2 Þg:

The above theorem states that the optimum to the Dubins inter-
val problem has to be either d� (which is computed using standard
Dubins paths with at most three segments where both the depar-
ture and the arrival angles belong to the boundary of the intervals)
or the length of a Dubins path with at most two segments where
either the departure or the arrival angle belongs to the boundary of
the intervals. As we already know how to compute d� [23], we
will now provide algorithms to solve for the optimal Dubins paths
with at most two segments (i.e., to solve minh12I1

Pðh1Þ for any
path P 2 fRS1; SR1;LS1;SL1;LR1;RL1g). This will solve the
Dubins interval problem.

5 Algorithms for Optimizing Dubins Paths With at

Most Two Segments

In this section, we will first present algorithms to find the
shortest RS path and the RL path: minh12I1

fRS1ðh1Þg and
minh12I1

fRL1ðh1Þg. These algorithms can then be used to solve
minh12I1

Pðh1Þ for any P 2 fSR1;LS1;SL1;LR1g using simple
reflections of the points about the x or the y axis as discussed in
Ref. [30]. For example, minh12I1

fLS1ðh1Þg can be solved by con-
sidering a reflection of the points about the x-axis as shown in
Fig. 9.

5.1 Optimizing the RS Path. Without loss of generality, a
reference frame can be chosen such that target 1 is at the origin
and target 2 lies on the x-axis as shown in Fig. 10. Here �x

represents the Euclidean distance between the targets. Given h1,
the existence of the RS path as well as its length can be deter-
mined using geometry. The length of the S path, the angle
between the x-axis and the S path, and the final arrival angle at tar-
get 2 are also functions of h1 and can be expressed as
Lðh1Þ; /ðh1Þ, and h2ðRS; h1Þ, respectively. Let the length of the
RS path be denoted as Dðh1Þ. For brevity, in some places we will
use L;/; h2, and D instead of Lðh1Þ;/ðh1Þ; h2ðRS; h1Þ, and Dðh1Þ,
respectively. Let dS :¼ �x if the angle of the straight line joining
the two targets lies in the intervals I1 and I2. If the angle con-
straints are not satisfied, dS is set to 1. Similarly, let dR denote
the length of the shortest circular arc of type R that joins the two
targets such that the boundary angles of the arc belong to the
respective intervals at the targets. If such an arc does not exist, dR

is set to1. In the following lemma, we assume that ½hmin
1 ; hmax

1 � 	
½0; 2p� and ½hmin

2 ; hmax
2 � 	 ½0; 2p�.

LEMMA 5.1. minh12I1
fRS1ðh1Þg ¼ minfdS; dR;RS1ðhmin

1 Þ;RS2

ðhmin
2 Þ; RS2ðhmax

2 Þg.
Proof. Refer to the Appendix for the proof.
Following the above lemma, the algorithm to compute

minh12I1
fRS1ðh1Þg requires one to find each of the values in the

set fdS; dR;RS1ðhmin
1 Þ;RS2ðhmin

2 Þ;RS2ðhmax
2 Þg and select the least

value.

5.2 Optimizing the RL Path. We use similar notations as in
Sec. 5.1 (refer to Fig. 11). The angles /ðh1Þ and h2ðRL; h1Þ are

Fig. 9 One can solve minh1‰I1fLS1(h1)g by considering the
reflections of the points with respect to the x-axis and solving
the corresponding minh1‰I1fRS1(h1)g

Fig. 10 RS path

Fig. 11 RL path
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also written as / and h2, for brevity. The length of the RL path is
denoted as Dðh1Þ and is equal to qðh1 þ h2 þ 2/Þ. RL paths do
not exist when �x > 4q. In addition, even when 0 � �x � 4q, there
are a subset of angles of h1 for which an RL path does not exist.

Moreover, given h1, there are two possible RL paths, as either
/þ h2 � p or /þ h2 > p. In the following discussion and in Fig.
11, we assume that /þ h2 < p. The other RL path can be
addressed similarly.

We first define some values of h1 where the optimum can occur
(these correspond to the extreme values of D and h2 for the RL

path and will be derived later in the proof). Let h1� be the solution

to the equation h2ðRL; h1Þ ¼ h1. Also, let h2� and h3� be the solu-
tions to equation /ðh1Þ þ h2ðRL; h1Þ ¼ p. Let dL denote the
length of the shortest circular arc of type L that joins the two
targets such that the boundary angles of the arc belong to the cor-
responding intervals at the targets and /þ h2 < p. If such an arc

does not exist, then dL is set to 1. Let RL� ¼ minfRL1ðhmax
1 Þ;

RL1ðhmin
1 Þ;RL2ðhmin

2 Þ;RL2ðhmax
2 g.

LEMMA 5.2. If �x > 2q; minh12I1
fRL1ðh1Þg ¼ minfRL1ðh1�Þ;

RL1ðh2�Þ;RL1ðh3�Þ;RL�g. If 0 � �x � 2q; minh12I1
fRL1ðh1Þg

¼ minfdL; dR;RL1ðh1�Þ;RL�Þg.
Proof. Refer to the Appendix.
Following the above lemma, the algorithm to compute

minh12I1
fRL1ðh1Þg requires one to find each of the values in the

set fRL1ðh1�Þ;RL1ðh2�Þ;RL1ðh3�Þ;RL�g and select the least
value.

In summary, the above algorithms can be used to compute the
cost of traveling between the sectors in the lower bounding prob-
lem as stated in Sec. 2. The lower bounding problem is a one-in-a-
set TSP. We use the Noon-Bean transformation [18,25] to first
convert the one-in-a-set TSP into an ATSP. Then we use a trans-
formation method outlined in Ref. [26] to convert the ATSP into a
symmetric TSP. This method converts an asymmetric instance
with n nodes into a symmetric instance with 3n nodes. We chose
this method primarily because unlike other transformations, there
is no big-M constant involved, and therefore, we did not have any
numerical difficulties such as those faced in Refs. [18], [21], and
[22]. For example, the transformed TSP instance corresponding to
20 targets with 32 discretizations at each target has 1920 nodes.
Each of the transformed TSP instances was solved to optimality
using the Concorde solver [27].

6 Numerical Results

Computational results are presented for 25 instances with 10,
15, and 203 targets in each instance. The locations of the
targets were uniformly sampled from a 1000
 1000 square. The
minimum turning radius of the vehicle was chosen to be 100.
The heading angles at each target are discretized into 4, 8, 16, and
32 intervals. The improvement of the lower bounds as the number
of discretizations or intervals increases is shown in Fig. 12. On
average, the improvement of the lower bounds with respective to
the optimal ETSP cost for 32 intervals was 22.28%.

A feasible solution is obtained by discretizing the angles at
each target (32 values) and applying the transformation procedure
similar to the lower bound computation. The comparison of the
cost of the feasible solution with respect to the optimal Euclidean
TSP cost and the lower bound (corresponding to 32 intervals at
each target) for the 25 instances in each case is shown in Fig. 13.
The average deviation of the cost of the feasible solution from its
corresponding lower bound for all the instances is 5.2%, while the
average deviation of the cost of the feasible solution from its cor-
responding ETSP cost is 29.2%. In one of the instances, we found
the cost of the feasible solution from its corresponding lower
bound improved by approximately 44%. These results show that
the proposed approach can be used to obtain tight lower bounds
for the DTSP. A feasible DTSP solution and an optimal solution
corresponding to the lower bound for an instance are shown in
Fig. 14.

We have also tested the algorithms by varying the minimum
turning radius (q) of the vehicle. The lower bounding algorithm is

Fig. 12 Lower bounds computed with 4, 8, 16, and 32 intervals
at each target for 25 instances: (a) 10 targets, (b) 15 targets, and
(c) 20 targets

3These 25 instances each with 20 targets are the same instances used in Fig. 2.
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run on the instances in Fig. 2 with four different values of
q 2 f50; 100; 150; 200g. The average of the lower and upper
bounds for each case with 16 discretizations at each target is
reported in Table 1. The first column of the table refers to the

problem size or the number of targets, and the second columns
refers to the minimum turning radius of the vehicle. The mean
values over 25 instances for the upper bounds, lower bounds
(computed using our algorithm), and the Euclidean lower bounds
are listed in the third, the fourth, and the fifth columns. The last
two columns denote the mean of the ratio of upper and lower
bounds. The gap between the Euclidean lower bounds and upper
bounds are higher for larger minimum turn radii, which is
expected. The proposed approach significantly improved the
bounds for problem instances with a turning radius equal to 150
and 200 units. For example, in the case of 20 targets with q¼ 200,
the ratio ðUB=LBÞ is trimmed to 1.25 from 1.98, which is signifi-
cant. This improvement in the ratio using the new lower bounds
compared to the Euclidean lower bounds indicates the effective-
ness of using our proposed approach.

We have also analyzed the results to find out the average num-
ber of two segment or three segment Dubins paths in an optimal
solution to the lower bounding problem. Specifically, given an
instance and its corresponding optimal solution, we compute the
proportion of the number of Dubins paths with at most two seg-
ments or three segments in the optimal solution. Similarly, we
also compute the proportion of costs contributed by the Dubins
paths with at most two segments or three segments in an optimal
solution. The mean values of these results over 25 instances for
varying number of sectors at each target are shown in Table 2.
These results indicate a generic trend we observed in all our simu-
lations: when the number of discretizations increases, the solu-
tions to the Dubins interval problem have three segments and tend
to have both the arrival and the departure angles of the solutions
occur at the boundaries of the sectors. We also fixed the number
of discretizations at 16 and varied the minimum turning radius of
the vehicle to find any pattern in the contributions of the two seg-
ment or three segment paths. Table 3 shows these results. As
noted, we did not observe any specific pattern when the minimum
turning radius was changed.

7 Conclusion

We provide a systematic procedure to find lower bounds for the
DTSP. This paper provides a new direction for developing
approximation algorithms for the DTSP. Currently, the transfor-
mation method increases the size of the one-in-a-set TSP by two
or three times, resulting in a large TSP. Computationally, more
efficient tools for directly solving the one-in-a-set TSP will be
useful in finding tighter lower and upper bounds for the DTSP.
Future work can also address the same problem with multiple
vehicles and other precedence constraints.

Fig. 14 A feasible Dubins path for an instance with 20 targets
and the path obtained from lower bound computation

Fig. 13 Comparison between lower bounds and upper bounds
for 32 discretizations, along with the optimal Euclidean TSP
cost: (a) 10 targets, (b) 15 targets, and (c) 20 targets
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Appendix

A.1 Proof of Lemma 5.1. Using Fig. 10, one can relate L and
/ to h1 using the following equations:

q sin /þ L cos / ¼ �x � q sin h1

q cos /� L sin / ¼ q cos h1

(A1)

The arrival angle h2ðRS; h1Þ at target 2 is equal to 2p� /. We
now consider two different cases: �x > 2q and �x � 2q (the RS
path does not exist for a subset of angles of h1 if �x < 2q).

Case 1: �x > 2q.

The length of the RS path is D :¼ ðh1 þ /Þqþ L. Therefore,
dD=dh1 :¼ ð1þ d/=dh1Þqþ dL=dh1. The derivatives of / and L
with respect to h1 can be obtained by differentiating Eq. (A1) as
follows:

q cos /� L sin /ð Þ d/
dh1

þ cos /
dL

dh1

¼ �q cos h1 (A2)

� q sin /þ L cos /ð Þ d/
dh1

� sin /
dL

dh1

¼ �q sin h1 (A3)

Solving these equations and simplifying further, we obtain the
following:

Table 2 Average contributions from two segment or three segment Dubins paths in an optimal solution to the lower bounding
problem: results for different number of sectors at each target

Average proportion of Dubins paths Average cost proportion of Dubins paths

No. of targets No. of sectors With �2 segments With three segments With �2 segments With three segments

10 4 0.816 0.184 0.8119 0.1881
10 8 0.564 0.436 0.4817 0.5182
10 16 0.292 0.708 0.2123 0.7877
10 32 0.172 0.828 0.1336 0.8664
15 4 0.8346 0.1653 0.7927 0.2073
15 8 0.6053 0.3947 0.537 0.463
15 16 0.3626 0.6373 0.2929 0.7071
15 32 0.1973 0.8027 0.1585 0.8415
20 4 0.864 0.136 0.822 0.178
20 8 0.66 0.34 0.554 0.4459
20 16 0.398 0.602 0.338 0.662
20 32 0.246 0.754 0.1958 0.8043

Table 3 Average contributions from two segment or three segment Dubins paths in an optimal solution to the lower bounding
problem: results for varying minimum turning radius of the vehicle

Average proportion of Dubins paths Average cost proportion of Dubins paths

No. of targets q With �2 segments With three segments With �2 segments With three segments

10 50 0.264 0.736 0.2201 0.78
10 100 0.292 0.708 0.2123 0.7877
10 150 0.36 0.64 0.2769 0.7231
10 200 0.432 0.568 0.3459 0.6541
15 50 0.2747 0.7253 0.2445 0.7554
15 100 0.3626 0.6373 0.2929 0.7071
15 150 0.4267 0.5733 0.3313 0.6687
15 200 0.4746 0.5253 0.3539 0.6462
20 50 0.284 0.716 0.2288 0.7712
20 100 0.398 0.602 0.338 0.662
20 150 0.48 0.52 0.3703 0.6297
20 200 0.51 0.49 0.3678 0.6322

Table 1 Results for varying minimum turning radius (q) of the vehicle

No. of targets q Upper bound (UB) Lower bound (LB) Euclidean bound (EB) Ratio (UB/LB) Ratio (UB/EB)

10 50 2964.24 2909.44 2851.60 1.02 1.04
10 100 3325.20 3077.56 2851.60 1.08 1.17
10 150 3905.80 3438.08 2851.60 1.14 1.37
10 200 4670.56 3957.32 2851.60 1.19 1.65
15 50 3602.24 3471.92 3373.08 1.04 1.07
15 100 4234.36 3790.80 3373.08 1.12 1.26
15 150 5091.80 4350.76 3373.08 1.18 1.52
15 200 5945.44 4888.24 3373.08 1.22 1.78
20 50 4040.04 3843.04 3713.44 1.05 1.09
20 100 4977.96 4413.32 3713.44 1.13 1.35
20 150 6181.44 5223.00 3713.44 1.19 1.67
20 200 7313.52 5854.36 3713.44 1.25 1.98

Note: The bounds and ratios indicate mean values for 25 instances.
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d/
dh1

¼ �x

L
cos /� 1 (A4)

dL

dh1

¼ � q�x

L
cos h1 (A5)

Therefore,

dD

dh1

¼ 1þ d/
dh1

� �
qþ dL

dh1

(A6)

¼ �x

L
q cos /� q cos h1ð Þ (A7)

¼ �x sin / (A8)

For any h1 2 ½0; 2p�, it is easy to verify geometrically that / 2
½0;p� using Fig. 10. Therefore, 8h1 2 ð0; 2pÞ; dD=dh1 > 0, i.e.,
the length of the RS path increases monotonically from �x. When
h1 ¼ 2p, the curved segment in the RS path vanishes and the
length of the RS path returns to the Euclidean distance between
the targets (�x). Even though the length of the RS path increases
monotonically for any h1 2 ½0; 2pÞ, the arrival angle at target 2,
h2 :¼ 2p� /, first decreases with h1, reaches a minimum at some
h1 ¼ h�, and increases to 2p. This minimum can be computed by
solving d/=dh1 ¼ 0) ð�x=LÞcosð/ðh�ÞÞ � 1 ¼ 0 or cosð/ðh�ÞÞ
¼ L=�x. One can verify that at h1 ¼ h�, h2 reaches a minimum.

Now, the optimum for minh12I1
fRS1ðh1Þg must satisfy one of

the following conditions:

(1) dD=dh1 ¼ 0 or h1 ¼ 0 (dD=dh1 does not exist at this

point) or h1 ¼ hmin
1 or h1 ¼ hmax

1 . 8h1 2 ð0; 2pÞ; dD=dh1

6¼ 0. As the length of the RS path increases monotonically
with respect to h1, we need not consider h1 ¼ hmax

1 . There-
fore, for this condition, the optimum occurs when h1 ¼ 0 or

h1 ¼ hmin
1 .

(2) h2 ¼ hmin
2 or h2 ¼ hmax

2 .

Therefore, when �x > 2q; minh12I1
fRS1ðh1Þg :¼ minfdS;

RS1ðhmin
1 Þ; RS2ðhmin

2 Þ;RS2ðhmax
2 Þg.

Case 2: �x � 2q.
In this case, the RS path is not defined for any h1 2

ðsinð�x=2qÞ;p=2þ cosð�x=2qÞÞ. Moreover, when h1 ¼ sinð�x=2qÞ
or h1 ¼ p=2þ cosð�x=2qÞ, the RS path reduces to just one
segment of type R. Therefore, following the same analysis as in

the previous case, minh12I1
fRS1ðh1Þg :¼ minfdS; dR;RS1ðhmin

1 Þ;
RS2ðhmin

2 Þ; RS2ðhmax
2 Þg. Hence this case is proved (Fig. 15).

A.2 Proof of Lemma 5.2. We can solve for / and h2 using
the following equations (Fig. 11):

2q cos /� q cos h2 ¼ q cos h1

2q sin /þ q sin h2 ¼ �x � q sin h1

(A9)

Fig. 15 RS path: examples illustrating D(h1) and h2(RS; h1): (a) �x >2q, (b) �x >2q, (c) �x £ 2q, and (d) �x £ 2q
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Differentiating and simplifying these equations, we get

�2 sin /
d/
dh1

þ sin h2

dh2

dh1

¼ �sin h1 (A10)

2 cos /
d/
dh1

þ cos h2

dh2

dh1

¼ �cos h1 (A11)

Solving further for d/=dh1 and dh2=dh1, we get

d/
dh1

¼ sin h1 � h2ð Þ
2 sin /þ h2ð Þ (A12)

dh2

dh1

¼ � sin h1 þ /ð Þ
sin /þ h2ð Þ (A13)

dD

dh1

¼ q 1þ dh2

dh1

þ 2
d/
dh1

� �

¼ q 1� sin h1 þ /ð Þ
sin /þ h2ð Þ þ

sin h1 � h2ð Þ
sin /þ h2ð Þ

 !
(A14)

Equating dD=dh1 ¼ 0 and simplifying the equations, we get
either /þ h1 ¼ 0 or /þ h2 ¼ 0 or h1 ¼ h2. /þ h1 ¼ 0 or /þ
h2 ¼ 0 would imply that one of the circles vanishes; however, this is
possible only when �x � 2q. When h1 ¼ h2, we note

that dh2=dh1 ¼ �1 and d/=dh1 ¼ 0. Using this, one can verify that
d2D=dh2

1¼2ð1�cosh1þ/ÞÞ=sinðh1þ/Þ)d2D=dh2
1>0. There-

fore, the length of the RL path reaches a minimum when h1¼h2.
Case 1: 4q � �x � 2q.
The optimum for minh12I1

fRL1ðh1Þg must occur at one of the

extreme values of Dðh1Þ or when h1 2 fhmin
1 ; hmax

1 g or

h2 2 fhmin
2 ; hmax

2 g. Dðh1Þ reaches a local minimum at h1 ¼ h1�

(Fig. 16). Also, the RL path just ceases to exist when h1 ¼ h2� or

h1 ¼ h3�. Specifically, for a small e > 0, the RL path does

not exist when h1 ¼ h2� � e or h1 ¼ h3� þ e. Therefore,

minh12I1
fRL1ðh1Þg :¼ minfRL1ðh1�Þ;RL1ðh2�Þ;RL1ðh3�Þ;RL�g.

Case 2: 2q � �x � 0.
In this case, one of the circles may cease to exist, and therefore,

the optimum may be equal to dL or dR if the corresponding
angle constraints are met. Following the same arguments as in the
previous case, we obtain minh12I1

fRL1ðh1Þg :¼ minfdL; dR;
RL1ðh1�Þ;RL�Þg. Hence this case is proved.
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