
Optim Lett (2016) 10:1269–1285
DOI 10.1007/s11590-015-0924-1

ORIGINAL PAPER

A primal-dual approximation algorithm for a two depot
heterogeneous traveling salesman problem

Jungyun Bae1 · Sivakumar Rathinam1

Received: 21 May 2013 / Accepted: 25 June 2015 / Published online: 2 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Surveillance applications require a collection of heterogeneous vehicles
to visit a set of targets. We consider a fundamental routing problem that arises in these
applications involving two vehicles. Specifically, we consider a routing problemwhere
there are two heterogeneous vehicles that start from distinct initial locations and a set
of targets. The objective is to find a tour for each vehicle such that each of the targets is
visited at least once by a vehicle and the sum of the distances traveled by the vehicles
is minimal. We consider an important special case of this routing problem where the
travel costs satisfy the triangle inequality and the following monotonicity property:
the first vehicle’s cost of traveling between any two targets is at most equal to the
second vehicle’s cost of traveling between the same targets. We present a primal-dual
algorithm for this case that provides an approximation ratio of 2.

Keywords Approximation algorithms · Primal-dual method · Traveling salesman
problem

1 Introduction

Heterogeneous unmanned vehicles are commonly used in surveillance applications for
monitoring and tracking a set of targets. For example, in the Cooperative Operations in
Urban Terrain project [2] at the Air Force Research Laboratory, a team of unmanned
vehicles are required to monitor a set of targets and send information/videos about
the targets to the ground station. A human operator enters the locations of the targets
through a human-machine interface, and the central computer associated with the

B Sivakumar Rathinam
srathinam@tamu.edu

1 3123 TAMU, College Station, TX 77843, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-015-0924-1&domain=pdf

1270 J. Bae, S. Rathinam

interface has a few minutes to determine the motion plans for each of the vehicles.
A fundamental subproblem that has to be solved by this computer is the problem of
finding a tour for each vehicle so that each target is visited at least once by some vehicle
and the sum of the distances traveled by all of the vehicles is minimal. This routing
problem is known as the traveling salesman problem (TSP) in the case where there
is only one vehicle. In the case where there are multiple vehicles that possibly start
from different initial locations or depots, this routing problem is known as theMultiple
Depot TSP. Once the routing problem is solved and the tours have been determined,
a nominal trajectory can be specified for each vehicle that includes other kinematic
constraints of the vehicles, using the results in [6].

A multiple depot TSP is a generalization of the TSP, and thus it is NP-hard. This
routing problem is further complicated if the vehicles involved are heterogeneous. In
this article, vehicles are heterogeneous because the distance to be traveled between
any two targets depends on the type of the vehicle used. In the context of unmanned
applications, which generally require solving a multiple depot heterogeneous TSP as
a subproblem, we are interested in developing fast algorithms that produce approxi-
mate solutions rather than finding optimal solutions, which may be relatively difficult.
Therefore, the main focus of this article is on developing approximation algorithms
for heterogeneous TSPs. An approximation algorithm for a problem is an algorithm
that runs in polynomial time and produces a solution whose cost is at most a given
factor away from the optimal cost for every instance of the problem.

The objective of this article is to develop a primal-dual algorithm for a two depot
heterogeneous TSP (TDHTSP). In addition to assuming that the costs satisfy the
triangle inequality for each vehicle,we assume that the travel costs satisfy the following
monotonicity property: the first vehicle’s cost of traveling between any two targets is
at most equal to the second vehicle’s cost of traveling between the same targets.
Using these assumptions, we show that our proposed primal-dual algorithm has an
approximation ratio of 2. We are motivated to address this case of the TDHTSP for
the following reasons:

1. The TDHTSP is one of the simplest cases of the general multiple depot hetero-
geneous TSP. The objective of this work is to develop a good algorithm that can
handle this simple case efficiently.

2. Consider a scenario where each of the vehicles is modeled as a ground robot that
can move both forwards and backwards with a constraint on its minimum turning
radius [7]. If the approach angle at each target is given, the optimal distance
required to travel between any two targets for the vehicles can be computed using
the result in [7]. In addition, if the minimum turning radius of the first vehicle is at
most equal to the minimum turning radius of the second vehicle, then the optimal
distance required for the first vehicle to travel between any two targets will be at
most equal to that of the second vehicle.

3. In scenarios where the travel cost is defined as the travel time (Di j/vk , where Di j

is the Euclidean distance between targets i and j and vk is the speed of the kth
vehicle), the travel costs satisfy themonotonicity property if the vehicles are sorted
such that v1 ≥ v2.

123

A primal-dual approximation algorithm for a two depot … 1271

4. In scenarios where vehicles have fuel constraints, it is possible that the vehicles
need to refuel by revisiting the depots. The cost of traveling between any two
target locations including the refueling stops will increase as the fuel capacity of
a vehicle decreases [8]. Hence, given a collection of vehicles with different fuel
capacities, one can order the vehicles based on their decreasing fuel capacities
such that travel costs satisfy the monotonicity property.

Without the assumptions about the costs of the two vehicles, the TDHTSP is a gener-
alization of the standard variant of the prize-collecting TSP considered by Goemans
and Williamson in [3]. In this variant, each target has a penalty associated with it. The
objective of the prize-collecting TSP is to find a tour for the vehicle that starts and
ends at the depot such that the sum of the tour’s cost plus the penalties of each target
not included in the tour is minimal. If πi and π j respectively denote the penalties of
the two vehicles i and j , the prize-collecting TSP can be cast as a TDHTSP by setting
the second vehicle’s cost of traveling the edge joining vertices i and j to be equal
to

πi+π j
2 . By choosing the penalty variable corresponding to the second depot to be

equal to 0, one can deduce that the second vehicle’s travel cost is actually equal to the
sum of the penalties of the targets that are not present in the first vehicle’s tour. Even
though there are no penalties explicitly mentioned in the TDHTSP, the tour cost of the
second vehicle (which accounts for the targets not visited by the first vehicle) acts as
penalties do. For these reasons, the primal-dual algorithm presented in this article is
based on the primal-dual algorithm available for the prize-collecting TSP in [3].

Most of the work in the literature related to approximation algorithms for multiple
depot TSPs deals with identical vehicles. For example, when the costs satisfy the trian-
gle inequality, there are several approximation algorithms for themultiple depot homo-
geneous TSP (see, for example, [4–6]). Recently, [10] presented a 3-approximation
algorithm for a two depot heterogeneous TSP. This algorithm partitions the targets by
solving a linear programming relaxation and then uses Christofides’s algorithm [1] to
find a sequence of targets for each vehicle. An approximation algorithm has been also
developed for the variant of the heterogeneous TSP where each vehicle starts and ends
at the same depot, and the maximum completion time of the tours is minimized [11].
A preliminary version of this paper without the main proofs appeared in [12].

The 2-approximation algorithms in the literature for the multiple depot TSP gen-
erally follow a two-step procedure. In the first step, a constrained forest problem that
is generally a relaxation of the multiple depot TSP is solved optimally. In the second
step, an Eulerian graph is found for each vehicle based on the constrained forest. Using
the Eulerian graphs, a tour can be found for each vehicle by shortcutting any target
already visited by a vehicle. In this article, we follow a similar procedure. We first find
a heterogeneous spanning forest using a primal-dual algorithm by solving a relaxation
of the TDHTSP. Then we double the edges in the heterogeneous spanning forest to
obtain an Eulerian graph for each vehicle. Given these Eulerian graphs, it is always
possible to find a tour for each vehicle that visits each of the targets exactly once [9].
The crux of this procedure depends on finding a good heterogeneous spanning forest.
Using a primal-dual algorithm, we find a heterogeneous spanning forest whose cost is
at most equal to the optimal cost of the TDHTSP in polynomial time. Hence, it follows
that the approximation ratio for our proposed procedure is 2.

123

1272 J. Bae, S. Rathinam

2 Problem statement

Let D = {d1, d2} represent the two depots (initial locations) corresponding to the
first and the second vehicle, respectively. Let T represent the set of targets, and let
V1 := T ∪ {d1} and V2 := T ∪ {d2} be the sets of vertices corresponding to the first
and the second vehicle, respectively. For i = 1, 2, let Ei denote the set of all the edges
that join any two distinct vertices in Vi , and let cost ie denote the i th vehicle’s cost
of traversing an edge e ∈ Ei . For every edge e joining two targets, we assume that
cost1e ≤ cost2e . We also assume that the costs satisfy the triangle inequality for both
the vehicles. A tour for a vehicle begins at its depot, visits a set of targets in some
sequence, and finally returns to its depot. The objective of the TDHTSP is to find a
tour for each vehicle such that each target is visited exactly once by one of the vehicles
and the sum of the costs of the edges traveled by the vehicles is minimal.

3 Problem formulation

Let xe be an integer variable that represents whether edge e ∈ E1 is present in the first
vehicle’s tour. For any edge e joining two targets, xe can only take values in the set
{0, 1}; xe = 1 if e is present in the first vehicle’s tour and xe = 0 otherwise. To allow
for a tour to visit only one target if required, xe can be any of the values in the set
{0, 1, 2} for an edge e joining the depot d1 and a target v ∈ T . Similarly, let ye be an
integer variable that represents whether edge e ∈ E2 is present in the second vehicle’s
tour. Let zU be a binary variable that determines the partition of targets connected to
the first and the second depot; zU = 1 if each target in U ⊆ T is connected to the
second depot and each target in T \U is connected to the first depot. At most one subset
U of targets is allowed to have zU = 1. Let δi (S), for i = 1, 2, denote the subset of
the edges of Ei that have one end in S and the other end in Vi\S. δi (S) is also called
the cut set of S corresponding to the i th vehicle.

For any S ⊆ T , at least two edges must be chosen from δ1(S) for the first vehicle’s
tour if there is at least one vertex in S that is not connected to the second depot, i.e.,∑

e∈δ1(S) xe ≥ 2 if
∑

T⊇U⊇S zU = 0. This requirement can bewritten as
∑

e∈δ1(S) xe+
2

∑
T⊇U⊇S zU ≥ 2. Similarly, for any S ⊆ T , at least two edges must be chosen from

δ2(S) for the second vehicle’s tour if all the vertices in S are required to be visited by the
second vehicle. This requirement can be expressed as

∑
e∈δ2(S) ye ≥ 2

∑
T⊇U⊇S zU .

Now consider the following relaxation of the integer program for the TDHTSPwithout
the degree constraints:

min
∑

e∈E1

cost1e xe +
∑

e∈E2

cost2e ye (1)

∑

e∈δ1(S)

xe + 2
∑

T⊇U⊇S

zU ≥ 2 ∀S ⊆ T, (2)

∑

e∈δ2(S)

ye ≥ 2
∑

T⊇U⊇S

zU ∀S ⊆ T, (3)

123

A primal-dual approximation algorithm for a two depot … 1273

∑

U⊆T

zU ≤ 1, (4)

xe, ye ∈ {0, 1} ∀e joining any two targets, (5)

xe ∈ {0, 1, 2} ∀e joining d1 and a target, (6)

ye ∈ {0, 1, 2} ∀e joining d2 and a target, (7)

zU ∈ {0, 1} ∀U ⊆ T . (8)

Consider a linear programming (LP) relaxation of the above integer program with
the objective stated in (1) subject to the constraints in (2)–(3) and ∀e ∈ E1 xe ≥ 0,
∀e ∈ E2 ye ≥ 0, ∀U ⊆ T zU ≥ 0. A dual of this LP relaxation can be formulated as
follows:

Cdual = max 2
∑

S⊆T

Y1(S) (9)

∑

S:e∈δ1(S)

Y1(S) ≤ cost1e ∀e ∈ E1, (10)

∑

S:e∈δ2(S)

Y2(S) ≤ cost2e ∀e ∈ E2, (11)

∑

S⊆U

Y1(S) ≤
∑

S⊆U

Y2(S) ∀U ⊆ T, (12)

Y1(S),Y2(S) ≥ 0 ∀S ⊆ T . (13)

We use this dual problem to find a heterogeneous spanning forest (HSF). A HSF
consists of two trees such that the first tree spans a subset of targets and d1 and the
second tree connects the remaining set of targets to d2.

4 Primal dual algorithm

The primal-dual algorithm is an iterative algorithm that follows the greedy procedure
outlined by Goemans and Williamson in [3]. The basic structure of the algorithm
involves maintaining a forest of edges corresponding to each vehicle (called F1 and
F2 for the first and second vehicle, respectively) and an implicit solution to the dual
problem. The edges in these forests are candidates for the set of edges that appear
in the algorithm’s final HSF output. The pseudo code of the primal-dual algorithm is
presented in Algorithm 1.

Initialization steps Initially, both F1 and F2 are empty (Fig. 1). Each connected
connected component in F1 and F2 contains exactly one vertex. All components except
the depots are considered active, and each vertex is unlabeled.1 All the dual variables
of the components in F1 and F2 are initially set to zero.

1 This labeling will be used in the pruning procedure at the end of the algorithm and aids in the proof of
the approximation ratio of the algorithm.

123

1274 J. Bae, S. Rathinam

Algorithm 1 : Primal-dual algorithm
1: Initialization

2: F1 ← ∅; F2 ← ∅; C1 ← {{v} : v ∈ V1}; C2 ← {{v} : v ∈ V2}
3: for v ∈ T do
4: Set v as unlabeled; p1(v) ← 0; p2(v) ← 0;

//Comment: Implicitly set Y1(S), Y2(S) ← 0, ∀S ⊆ T
5: w1({v}) ← 0; w2({v}) ← 0; Bound({v}) ← 0
6: active1({v}) ← 1;active2({v}) ← 1
7: end for
8: active1({d1}) ← 0; active2({d2}) ← 0; w1({d1}) ← 0; w2({d2}) ← 0; Bound({d1}) ← 0

9: Main loop

10: while ∃C ∈ C1 such that active1(C) = 1 do
11: for i = 1, 2 do
12: Find an edge ei = (u, v) ∈ Ei with u ∈ Cix , v ∈ Ciy , where Cix ,Ciy ∈ Ci ,Cix �= Ciy that

minimizes εi = (costiei −pi (u)−pi (v))

activei (Cix)+activei (Ciy)

13: end for
14: Let C := {C : active1(C) = 1,Children(C) = ∅,C ∈ C1}. Find C ∈ C that minimizes ε3 =

Bound(C) − w1(C)

15: εmin = min(ε1, ε2, ε3)
16: //Comment: If more than one value in {ε1,ε2,ε3} is equal to εmin ,

then give priority first to Case ε1, then to Case ε2 and finally to Case ε3

17: for i = 1, 2 do
18: for each active component C ∈ Ci do
19: wi (C) ← wi (C) + εmin
20: For all v ∈ C , pi (v) ← pi (v) + εmin

//Comment: Implicitly set Yi (C) ← Yi (C) + εmin , ∀ active C ∈ Ci
21: if i = 1 then
22: Bound(C) ← Bound(C) + εmin |Children(C)|
23: end
24: end for
25: end for

26: if εmin = εi for i = 1 or 2 then
27: Fi ← Fi ∪ {ei }
28: Ci ← Ci ∪ {Cix ∪ Ciy} − Cix − Ciy
29: wi (Cix ∪ Ciy) ← wi (Cix) + wi (Ciy)
30: if i = 1 then Bound(C1x ∪ C1y) ← Bound(C1x) + Bound(C1y) end
31: if di ∈ Cix ∪ Ciy then
32: activei (Cix ∪ Ciy) ← 0
33: if i = 1 then active2(C) ← 0 ∀C ∈ Children(C1x ∪ C1y) end
34: else activei (Cix ∪ Ciy) ← 1
35: end
36: else
37: active1(C) ← 0
38: Label all the unlabeled vertices of C with label C
39: end if
40: end while

41: Pruning Step

42: F ′
1 is obtained from F1 by the following procedure:

• Find L := {u : u ∈ T, u is a target on the path joining any unlabeled target to d1}. Note: L
includes all the unlabeled targets and other targets that lie on the paths joining the unlabeled
targets and d1.

• Find L ′ := {v : v /∈ L , label of v ⊇ label of u, u is a labeled target in L}.
• Remove all the edges incident on any vertex not present in L ∪ L ′.

43: F ′
2 is obtained from F2 by removing all the edges incident on any vertex u ∈ L ∪ L ′.

123

A primal-dual approximation algorithm for a two depot … 1275

F1 F2

T t

t4 t4

Targets

t2

t3

t

t3

t1
t1

t2

Depot d1

tt5 tt5t8t5

t

t8t5

Depot d2

t6
t7

t6
t7

Fig. 1 An example illustrating the basic steps in the primal dual algorithm. There are 8 targets (denoted
by ti for i = 1, . . . , 8) in this example. The forests F1 and F2 are initially empty. Each component that
contains a target is active. The components that contain the depots are inactive

The initialization steps are presented in lines 2–8 of the pseudo code. In this code,
C1 and C2 denote the set of connected components in F1 and F2, respectively. A dual
solution is implicitly generated using variables pi (u) := ∑

S:u∈S Yi (S) for any target
u ∈ T , and wi (C) := ∑

S⊆C Yi (S) for any component C ∈ Ci (i = 1, 2). The
algorithm also keeps track of the activity of a component C ∈ Ci using the variable
activei (C) for i = 1, 2. For any component C ∈ C1, the variable Bound(C) :=∑

S⊆C Y2(S) is used to enforce the feasibility constraint (12) in the dual problem.
Main loop In each iteration, the algorithm uniformly increases the dual variable of

each active component by a value εmin that is as large as possible without violating
any of the constraints (10)–(12) in the dual (lines 11–25 of the pseudo code). As the
components in C1 tend to merge first, we refer to the components in C1 as parents and
the components in C2 as their children. Specifically, for any component C ∈ C1, we
define Children(C) := {Ĉ : Ĉ ∈ C2, Ĉ ⊆ C}. The feasibility of the dual solution is
ensured in each iteration in the following way (lines 11–15 of the pseudo code):

– For i = 1, 2, as long as targets u and v are not connected in Fi ,
∑

S:e∈δi (S) Yi (S) =
pi (u)+ pi (v) for the edge e joining u and v. It follows that the dual variable of the

components containing u and v can be increased at most by costie−pi (u)−pi (v)

activei (Cix)+activei (Ciy)
,

where e = (u, v), u ∈ Cix , v ∈ Ciy , and Cix ,Ciy ∈ Ci (lines 11–13 of the pseudo
code). Once the edge e = (u, v) has been added to the forest Fi , the dual cost∑

S:e∈δi (S) Yi (S)does not increase, andhence the packing constraint corresponding
to e in (10)–(11) will continue to hold.

– The algorithm also ensures the dual solution satisfies (12) using the set
Children(C) and the variable Bound(C) defined for any component C ∈ C1.
Given any C ∈ C1, ε3 := Bound(C) − w1(C) = ∑

S⊆C Y2(S) − ∑
S⊆C Y1(S)

123

1276 J. Bae, S. Rathinam

F1 F2

t4 t4

t
t2

t3

t2

t3

t1
t1

2

Depot d1

t8t5 t8t5t8

t

t85

Depot d2

t6
t7

t6
t7

Fig. 2 Snapshot of the forests at the end of the first iteration of the main loop. The radius of the circular
region, pi (u) := ∑

S:u∈S Yi (S), around a target u in the forest Fi is equal to the sum of the dual variables
of all components that contain u in Fi . Edge e := (t2, t3) is added to F1 as p1(t2) + p1(t3) becomes equal
to cost1e . In this case, εmin = ε1

indicates the maximum amount by which any dual variable can be increased with-
out violating Eq. (12) (line 14 of the pseudo code).

The increase in the dual variables results in one of the following outcomes in each
iteration:

– If any of the constraints in (10)–(11) becomes tight2 for some edge between two
distinct components in Fi , at least one of which is active, the algorithm adds the
edge to Fi and merges the two components (lines 27–35 of the pseudo code). If
the merged component does not contain a depot, it becomes active (Figs. 2, 3);
otherwise it is inactive (Fig. 4).

– If a constraint in (12) becomes tight for a component in F1, then the component is
deactivated (Figs. 4, 5, 6, 7) and each unlabelled target in the component is labeled
with the name of the component (lines 37–38 of the pseudo code).

The iterative process terminates when all components become inactive (Fig. 7).
Pruning step The final step of the algorithm removes any unnecessary edges that

are not required to be in F1 or F2, using a labeling procedure from the prize-collecting
TSP in [3] (Fig. 8). Specifically, this procedure prunes edges in F1 while maintaining
two properties. First, any unlabeled target in F1 must be visited by the first vehicle
since this target was never in any deactivated component and the algorithm never

2 A constraint becomes tight if none of the variables present in the constraint can be increased without
violating the constraint.

123

A primal-dual approximation algorithm for a two depot … 1277

F1 F2

t4 t4

t1

t2

t3

t2

t3

t1
t1

Depot d1

t8t5 t8t58

t7

8

t

Depot d2

t6
t7

t6
t7

Fig. 3 Snap shot of the forests at the end of the second iteration. Edge e := (t2, t3) is added to F2 as
p2(t2) + p2(t3) becomes equal to cost2e . In this case, εmin = ε2

F1 F2

t4 t4

t1

t2

t3

t2

t3

t1
t1

Depot d1

t8t5 t8t58

t7

8

t

Depot d2 Deactivated

t6
t7

t6
t7

Fig. 4 Snapshot of the forests after three iterations of the main loop. The constraint corresponding to the
edge joining target t6 and depot d2 becomes tight. Edge (t6, d2) is added to F2 and the merged component
is deactivated as it contains d2. The dual variable Y2({t6}) does not increase further and will serve as an
upper bound on Y1({t6}). In this case, εmin = ε2

123

1278 J. Bae, S. Rathinam

F1 F2

t4 t4

t1

t2

t3

t2

t3

t1
t1

t8t5 t8t5

Depot d1

8

t7

8

tt6
t7

t6
t7

Depot d2Deactivated Deactivated

Fig. 5 Snapshot of the forests at the end of the fourth iteration of the main loop. Component {t6} in F1 is
deactivated because w1({t6}) := Y1({t6}) becomes equal to w2({t6}) := Y2({t6}). In this case, εmin = ε3

F1 F2

t4 t4

t1

t2

t3

t2

t3

t1
t1

Depot d1

t8t5 t8t58

t7

8

t

Depot d2

t6
t7

t6
t7

Fig. 6 Snapshot of the forests after few iterations of the main loop. All components are inactive except
C := {t5, t6, t7, t8} of F1. Notice that all the targets are connected to one of the two depots and the algorithm
can stop if needed. However, the algorithm is not terminated until all components are inactive. The reason
for this is that w1(C) := ∑

S⊆C Y1(S) can be less than w2(C) := ∑
S⊆C Y2(S), and therefore, it is

possible that the targets in C can get connected to d1 at a lower cost

123

A primal-dual approximation algorithm for a two depot … 1279

F1 F2

t4 t4

t1

t2

t3

t2

t3

t1
t1

Depot d1

t8t5 t8t58

t7

8

t

Depot d2

t6
t7

t6
t7

Fig. 7 Snapshot of the forests at the end of the main loop. C := {t5, t6, t7, t8} of F1 is deactivated because
w1(C) becomes equal tow2(C). In this case, εmin = ε3. The main loop terminates because all components
are now inactive

F1 F2

t4 t4

t1

t2

t3

t2

t3

t1
t1

Depot d1

t8t5 t8t58

t7

8

t

Depot d2

t6
t7

t6
t7

Fig. 8 The final output (HSF) of the primal-dual algorithm after the unnecessary edges are removed in the
pruning step

considered this target for a visit by the second vehicle. Second, if any target with label
C is visited by the first vehicle, then any other target with a label C ′ ⊇ C must also be
visited by the first vehicle. In addition, the pruning procedure removes as many edges

123

1280 J. Bae, S. Rathinam

as possible from F2 while ensuring that any target not visited by the first vehicle is
visited by the second vehicle (lines 42–43 of the pseudo code).

A key feature of our primal-dual procedure is that it ensures that the components in
F1 tend to merge before the components in F2. Even if the forests contain a feasible
HSF at some point, the primal-dual algorithm continues in hope of connecting the
targets to d1 at a cheaper cost (see Fig. 6). It turns out, as we will show, that the way
that this is accomplished is useful for obtaining a good approximation ratio.

Remark Any component Ĉ ∈ C2 becomes inactive and seizes to be a child of any
component in C1 once Ĉ merges with a component in C2 containing d2. For this reason,
after few iterations, a component in C1 may still be active but not have any children.

5 Properties of the primal-dual algorithm

Consider any target u ∈ T . At the start of the kth iteration, let Ck
1 (u) denote the

component of F1 containing u and let Ck
2 (u) denote the component of F2 containing

u. Also, Ck
2 (u) is referred as a child of Ck

1 (u) if Ck
2 (u) ⊆ Ck

1 (u).

Lemma 1 The following statements are true for all k:

1. Ck
2 (u) ⊆ Ck

1 (u), unless Ck
2 (u) contains the depot d2.

2. active1(Ck
1 (u)) ≥ active2(Ck

2 (u)).

Proof Let us prove this lemma by mathematical induction.
Induction basis (k = 1) At the start of the first iteration, C1

1(u) = C1
2(u) = {u},

and the components C1
1(u) and C1

2(u) are both active. Therefore, Lemma 1.1 and 1.2
hold for k = 1.

Induction hypothesis Let us assume that the lemma is true for the lth iteration for
any 1 ≤ l ≤ k. As active1(Cl

1(u)) ≥ active2(Cl
2(u)) for any 1 ≤ l ≤ k, it follows

that p1(u) ≥ p2(u). Therefore, at the start of the kth iteration,

ε1 = cost1(u,v) − p1(u) − p1(v)

active1
(
Ck
1 (u)

) + active1
(
Ck
1 (v)

)

≤ cost2(u,v) − p2(u) − p2(v)

active2
(
Ck
2 (u)

) + active2
(
Ck
2 (v)

)

= ε2. (14)

��
Induction step

Proof of Lemma 1.1 During the kth iteration, there are three possible cases for the
components Ck

1 (u) and Ck
2 (u): (1) Ck

1 (u) merges with another component in C1, (2)
Ck
2 (u) merges with another component in C2, or (3) Ck

1 (u) is deactivated because
its corresponding constraint in (12) becomes tight. It is easy to see that Ck+1

2 (u) ⊆
Ck+1
1 (u) in the first case.Ck

1 (u) can be deactivated, as described in the third case, only
when Ck

1 (u) does not have any children, i.e., Ck
2 (u) already contains d2. Therefore,

Lemma 5 is true vacuously in the third case.

123

A primal-dual approximation algorithm for a two depot … 1281

Let us nowexamine the second case. IfCk
2 (u) is active andmergeswith a component

that contains d2, thenLemma1.1 is true for l = k+1. IfCk
2 (u) is active andmergeswith

another active component Ck
2 (v) corresponding to target v, we claim that Ck

1 (u) =
Ck
1 (v) since ε1 ≤ ε2 by hypothesis, Algorithm 1 will not merge Ck

2 (u) and Ck
2 (v)

unless it merges Ck
1 (u) and Ck

1 (v). And if Ck
1 (u) = Ck

1 (v), it follows that the merged
component Ck+1

2 (u) will be a child of Ck+1
1 (u).

If Ck
2 (u) is inactive because Ck

2 (u) ⊆ Ck
1 (u) and d1 ∈ Ck

1 (u), we claim that Ck
2 (u)

will never merge with any other component. For if Ck
2 (u) (which is inactive) merges

with some other component Ck
2 (v) corresponding to target v, then Ck

2 (v) must be
active and Ck

1 (u) �= Ck
1 (v). Again by the hypothesis (Eq. 14), the algorithm will

prefer to merge Ck
1 (u) and Ck

1 (v) before merging their children Ck
2 (u) and Ck

2 (v).
But once Ck

1 (u) and Ck
1 (v) are merged, the component Ck

2 (v) becomes a child of
Ck
1 (u) ∪ Ck

1 (v) and as a result will be deactivated (lines 31–33 of the Algorithm 1).
Therefore,Ck

2 (u)will remain inactive and will never merge with any other component
during the kth iteration. Hence, Lemma 1.1 is true in this case. ��

Proof of Lemma 1.2 If Ck
2 (u) is inactive, either d2 ∈ Ck

2 (u) or Ck
2 (u) ⊆ Ck

1 (u), d1 ∈
Ck
1 (u).

– If Ck
2 (u) already contains d2, then Ck+1

2 (u) must also be inactive. Therefore,
active1(C

k+1
1 (u)) ≥ active2(C

k+1
2 (u)) = 0.

– If Ck
2 (u) is inactive because Ck

2 (u) ⊆ Ck
1 (u) and d1 ∈ Ck

1 (u), then we have
already shown (in the proof of Lemma 1.1) that Ck

2 (u) can never merge with
any other component during the kth iteration. Therefore, active1(C

k+1
1 (u)) ≥

active2(C
k+1
2 (u)).

IfCk
2(u) is active, then by the hypothesis,Ck

2 (u) ⊆ Ck
1 (u) andCk

1 (u) is active. Since
Ck
1 (u) has at least one active child inCk

2 (u),Ck
1 (u) can become inactive during the kth

iteration only whenCk
1 (u)merges with another component containing d1. But this will

deactivate all the children ofCk
1 (u), includingCk

2 (u). Therefore, active1(C
k+1
1 (u)) ≥

active2(C
k+1
2 (u)). ��

5.1 Feasibility and running time analysis

Let X denote the set of vertices not spanned by F ′
1. Based on the label of each vertex in

X , X can be partitioned into disjoint deactivated components C1,C2, . . . ,Cm , where
each Ci denotes the maximal label of its corresponding component.

Lemma 2 The primal-dual algorithm produces a feasible HSF in O(|T |2 log |T |)
steps. Also, no vertex spanned by the edges in F ′

1 is spanned by the edges in F ′
2, and

vice versa.

Proof Since the sum of the number of components in C1, the number of active com-
ponents in C1, and the number of components in C2 decreases by at least 1 during each
iteration, the primal-dual algorithm must terminate after at most 3|T | + 2 iterations.

123

1282 J. Bae, S. Rathinam

Using the techniques given in [3], this primal-dual algorithm can be implemented in
O(|T |2 log |T |) steps.

The algorithm terminates when all the components of C1 become inactive. This is
only possible if each of the targets in T is connected to either d1 or d2. Note that F ′

1 is
formed from F1 in such a way that each of the unlabeled vertices remains connected to
d1. The only vertices not spanned by F ′

1 are some of the labeled vertices. These vertices
were labeled because the components in C1 that span these vertices were deactivated
for making their associated constraints in (12) tight. In addition, a component in C1 can
become deactivated due to a constraint in (12) only if it has already lost all its children,
i.e., each of these vertices in the component is already connected to d2. Therefore,
by the construction of F ′

2, each of the labeled vertices not spanned by F ′
1 must be

connected to d2 and spanned by F ′
2. Hence, the algorithm produces a feasible HSF.

Consider any deactivated componentCi ⊆ X .Ci can be deactivated during an iter-
ation only ifCi does not have children and

∑
S⊆Ci

Y1(S) = w1(Ci) = Bound(Ci) =
∑

S⊆Ci
Y2(S). Note that Ci can lose all its children only if all the targets in Ci are

already connected to d2 in F2. Also, during the iteration when Ci is deactivated, no
target u ∈ Ci is connected to any other target v ∈ T \Ci in F1. As a result, we claim
that u does not have an adjacent vertex v in F2 such that v ∈ T \Ci . For by Lemma 1
andEq. (14), the algorithmwould have added the edge (u, v) to F1 before adding (u, v)

to F2. Thus, since target u is not connected to target v ∈ T \Ci in F1, u and v cannot be
connected in F2 (during the considered iteration). Therefore, during the construction
of F ′

2, all the edges that are incident to any vertex u /∈ X could be dropped. Hence, any
vertex spanned by the edges in F ′

1 is not spanned by the edges in F ′
2, and vice versa. ��

5.2 Approximation ratio analysis

The proposed algorithm for the TDHTSP requires doubling the edges in the HSF
obtained by the primal-dual algorithm and using the resulting Eulerian graph to find
a tour for each vehicle.

Theorem 1 The proposed algorithm has an approximation ratio of 2.

Proof We need to show that the sum of the costs of the edges in the HSF found by
the primal-dual algorithm is at most equal to the optimal cost of the TDHTSP. To do
this, we first simplify the dual cost obtained by the primal-dual algorithm as follows:

2
∑

S⊆T

Y1(S) = 2
∑

S⊆T,S�Ci ,i=1,...,m

Y1(S) + 2
m∑

i=1

∑

S⊆Ci

Y1(S)

= 2
∑

S⊆T,S�Ci ,i=1,...,m

Y1(S) + 2
m∑

i=1

∑

S⊆Ci

Y2(S). (15)

Next, we express the cost of the edges in the first tree in terms of the dual variables
as follows. An edge e is added to F1 and consequently appears in F ′

1 only if the
corresponding constraint in (10) is tight, i.e., cost1e = ∑

S:e∈δ1(S) Y1(S). Therefore,

123

A primal-dual approximation algorithm for a two depot … 1283

∑

e∈F ′
1

cost1e =
∑

e∈F ′
1

∑

S:e∈δ1(S)

Y1(S)

=
∑

S⊆T

Y1(S)

∣
∣
∣F ′

1

⋂
δ1(S)

∣
∣
∣ .

Since F ′
1

⋂
δ1(S) = 0 for any S ⊆ Ci , we can further simplify the above equation to

∑

e∈F ′
1

cost1e =
∑

S⊆T,S�Ci ,i=1,...,m

Y1(S)

∣
∣
∣F ′

1

⋂
δ1(S)

∣
∣
∣ . (16)

Similarly, we can express the cost of the edges in the second tree in terms of the
dual variables as follows. From Lemma 2, note that F ′

2 can be decomposed into a set
of disjoint sets F ′

2i where each F ′
2i consists of edges that form a tree spanning each

target from Ci and d2. Since an edge e is added to F2 and consequently appears in F ′
2i

only if the corresponding constraint in (11) is tight, cost2e = ∑
S:e∈δ2i (S),S⊆Ci

Y2(S),

where δ2i (S) consists of all the edges with one endpoint in S and another endpoint in
Ci ∪ {d2}\S.

∑

e∈F ′
2

cost2e =
m∑

i=1

∑

e∈F ′
2i

cost2e

=
m∑

i=1

∑

e∈F ′
2i

∑

S:e∈δ2i (S),S⊆Ci

Y2(S)

=
m∑

i=1

∑

S⊆Ci

Y2(S)

∣
∣
∣F ′

2i

⋂
δ2i (S)

∣
∣
∣ . (17)

Therefore, from Eqs. (15), (16), and (17), all we need to do to complete the proof is
to show that

∑

S⊆T,S�Ci ,i=1,...,m

Y1(S)

∣
∣
∣F ′

1

⋂
δ1(S)

∣
∣
∣ +

m∑

i=1

∑

S⊆Ci

Y2(S)

∣
∣
∣F ′

2i

⋂
δ2i (S)

∣
∣
∣

≤ 2
∑

S⊆T,S�Ci ,i=1,...,m

Y1(S) + 2
m∑

i=1

∑

S⊆Ci

Y2(S). (18)

This can be established by proving that during any iteration, the increase in the primal
cost (the left-hand side of the inequality) is at most equal to the increase in the dual
cost (the right-hand side of the inequality). To see this, choose any iteration of the
primal-dual algorithm. Let Na be the set of all active components in C1 that are not
subsets of X at the start of this iteration, and letNd be the set of all inactive components
in C1 that are not subsets of X at the start of the iteration. Note that one of the inactive
components of Nd must contain the depot d1. For i = 1, . . . ,m, let Mai denote the

123

1284 J. Bae, S. Rathinam

set of all active components in C2 that are subsets of Ci . Also, let Md denote the
inactive component in C2 that contains d2.

Now form a graph H1 with components in Na ∪ Nd as its vertices and the edges
e ∈ F ′

1 ∩ δ1(C), for C ∈ Na ∪ Nd , as its edges. H1 is a tree that spans all of the
vertices in Na ∪ Nd . Similarly, form a graph H2i with components in Mai ∪ {Md}
as its vertices and the edges e ∈ F ′

2i ∩ δ2(C), for C ∈ Mai ∪ {Md}, as its edges. H2i
is a tree that spans all of the vertices inMai ∪ {Md}.

Let deg(v,G) represent the degree of vertex v in graph G. During the iteration, the
dual variable corresponding to each of the active components is increased by εmin . As
a result, the left-hand side of the inequality will increase by εmin(

∑
v∈Na

deg(v, H1)+∑m
i=1

∑
v∈Mai

deg(v, H2i)), while the right-hand side of the inequality will increase
by 2εmin(|Na | + ∑m

i=1 |Mai |). Therefore, the proof will be complete if we can show
that

∑

v∈Na

deg(v, H1) +
m∑

i=1

∑

v∈Mai

deg (v, H2i) ≤ 2

(

|Na | +
m∑

i=1

|Mai |
)

. (19)

We now claim that any vertex v in H1 that represents an inactive component in Nd

must have its degree deg(v, H1) ≥ 2 unless the inactive component contains the depot
d1. This result follows from the fact that a component that does not contain d1 can
become inactive in C1 only if the constraint associated with this component in (12)
becomes tight. Therefore, all the vertices in this inactive component must be labeled.
Also, if vertex v is a leaf (i.e., deg(v, H1) = 1), then pruning all the edges from
this inactive component will not disconnect any unlabeled target from d1. Thus, the
pruning step of the algorithm ensures that an inactive component can never be a leaf
vertex in H1 unless it contains d1. Hence,

∑

v∈Nd

deg(v, H1) ≥ 2|Nd | − 1. (20)

We now show the final part of the proof:

∑

v∈Na

deg(v, H1) +
m∑

i=1

∑

v∈Mai

deg(v, H2i) (21)

=
∑

v∈Na∪Nd

deg(v, H1) −
∑

v∈Nd

deg(v, H1)

+
m∑

i=1

⎡

⎣
∑

v∈Mai∪{Md }
deg (v, H2i) − deg (Md , H2i)

⎤

⎦ (22)

≤
∑

v∈Na∪Nd

deg(v, H1) −
∑

v∈Nd

deg(v, H1) +
m∑

i=1

⎡

⎣
∑

v∈Mai∪{Md }
deg(v, H2i)

⎤

⎦

(23)

123

A primal-dual approximation algorithm for a two depot … 1285

H1 is a tree that spans all the vertices in Na ∪ Nd . Therefore, the sum of the degrees
of all the vertices in H1 is 2(|Na | + |Nd | − 1). Similarly, H2i is a tree that spans all
the vertices in Mai ∪ {Md}. Therefore, the sum of the degrees of all the vertices in
H2i is 2|Mai |. Hence

∑

v∈Na

deg(v, H1) +
m∑

i=1

∑

v∈Mai

deg(v, H2i)

≤ 2 (|Na | + |Nd | − 1)

−
∑

v∈Nd

deg(v, H1) + 2
m∑

i=1

|Mai | (24)

≤ 2 (|Na | + |Nd | − 1) − (2|Nd | − 1) + 2
m∑

i=1

|Mai | (from Eq. 20) (25)

< 2|Na | + 2
m∑

i=1

|Mai |. (26)

This completes the proof. ��

References

1. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Carnegie
Mellon University, Pittsburgh (1976)

2. Feithans, G.L., Rowe, A.J., Davis, J.E., Holland, M., Berger, L.: Vigilant spirit control station (vscs)the
face of counter. In: Proceedings of theAIAAGuidance,Navigation andControl Conference Exhibition.
AIAA (2008)

3. Goemans,M.X.,Williamson,D.P.: A general approximation technique for constrained forest problems.
SIAM J. Comput. 24(2), 296–317 (1995)

4. Malik,W., Rathinam, S., Darbha, S.: An approximation algorithm for a symmetric generalizedmultiple
depot, multiple travelling salesman problem. Oper. Res. Lett. 35(6), 747–753 (2007). doi:10.1016/j.
orl.2007.02.001

5. Rathinam, S., Sengupta, R.: 3/2-approximation algorithm for two variants of a 2-depot hamiltonian
path problem. Oper. Res. Lett. 38(1), 63–68 (2010)

6. Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with
nonholonomic constraints. Autom. Sci. Eng. IEEE Trans. 4(1), 98–104 (2007). doi:10.1109/TASE.
2006.872110

7. Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math.
145(2), 367–393 (1990)

8. Sundar,K.,Rathinam,S.:Algorithms for routing anunmanned aerial vehicle in the presence of refueling
depots. Autom. Sci. Eng. IEEE Trans. 11, 287 (2013). doi:10.1109/TASE.2013.2279544

9. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
10. YadlapallI, S., Rathinam, S., Darbha, S.: 3-Approximation algorithm for a two depot, heterogeneous

traveling salesman problem. Optim. Lett. 6, 1–12 (2010). doi:10.1007/s11590-010-0256-0
11. Gørtz, I.L., Molinaro, M., Nagarajan, V., Ravi, R.: Capacitated vehicle routing with non-uniform

speeds. In: Integer Programming and Combinatoral Optimization (IPCO), LNCS 6655, pp. 235–247.
Springer (2011)

12. Bae, J., Rathinam, S.: An approximation algorithm for a heterogeneous traveling salesman problem.
ASME Dynamic Systems and Control Conference, pp. 637–644. Arlington, Virginia, 31 Oct–2 Nov
2011

123

http://dx.doi.org/10.1016/j.orl.2007.02.001
http://dx.doi.org/10.1016/j.orl.2007.02.001
http://dx.doi.org/10.1109/TASE.2006.872110
http://dx.doi.org/10.1109/TASE.2006.872110
http://dx.doi.org/10.1109/TASE.2013.2279544
http://dx.doi.org/10.1007/s11590-010-0256-0

	A primal-dual approximation algorithm for a two depot heterogeneous traveling salesman problem
	Abstract
	1 Introduction
	2 Problem statement
	3 Problem formulation
	4 Primal dual algorithm
	5 Properties of the primal-dual algorithm
	5.1 Feasibility and running time analysis
	5.2 Approximation ratio analysis

	References

